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Summary

The deposition of intracellular and extracellular B-amyloid peptide (A) in the brain is a patho-
logic feature of Alzheimer’s disease (AD), a prevalent neurodegenerative disorder. However, the
exact role of the AR peptide in causing AD’s symptoms is unclear.

CRIL-2266 SH-SY5Y human neuroblastoma cells (ATCC, USA) and HTB-11 human neuroblastoma
cells (ATCC, USA) were cultured. Reverse transcription-polymerase chain reaction (RT-PCR) was
performed to analyze the effects of 25-35, morphine, and SNAP treatments upon BACE-1 and
BACE-2 mRNA expression semi-quantitative RI-PCR. The production of NO in SH-SY5Y cells was
detected using the Apollo 4000 Free Radical Analyzer (World Precision Instruments).

Untreated HTB-11 neuroblastoma cells constitutively express BACE-1 and BACE-2 mRNA. Morphine
down regulates the expression of BACE-1 and up regulates the expression of BACE-2 in a naloxone
antagonizable manner. When HTB-11 cells were treated with L-NAME, a cNOS inhibitor; the ef-
fects of morphine were blocked. SNAP (a NO donor) mimicked the effect of morphine. In SH-
SY5Y cells, AB treated cells show a dose-dependent decrease in NO release, demonstrating that AB
is dose-dependently inhibiting the release of constitutive NO.

AP and morphine/NO each inhibit the production of the other. This suggests that a deficiency of
basal NO or endogenous morphine may trigger drastically reduced levels of basal NO. The out-
come is chronic vasoconstriction and brain hypoperfusion and eventual neuronal death. This nov-
el theorized mechanism for AD supports an increasingly-accepted vascular pathological hypothe-
sis for the disease.
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BACKGROUND

Alzheimer’s disease (AD) afflicts more than 4.5 million peo-
ple in the United States, which may grow to 11.3 to 60 mil-
lion by the year 2050 [1]. AD gradually destroys a person’s
memory, learning/reasoning ability, and capability of car-
rying out daily tasks [2]. There is currently no known cure
for the disease, nor is there a known single cause; however,
recent research has uncovered potential factors in the pa-
thology of AD. At the microscopic level, AD is neuropatho-
logically characterized by senile plaques, neurofibrillary tan-
gles (NFTs), intracellular aggregation of the protein tau, and
extensive neuronal loss [3]. The exact relationship between
the plaques, NFTs, and the pathophysiological mechanisms
underlying AD is still debated [4]. Evidence strongly sug-
gests that neuritic plaques containing B-amyloid (A) pep-
tide, the main pathohistological feature of AD is critically
involved at an early stage in its pathogenesis [3].

AB is a 39- to 43-amino acid B-sheet peptide derived from
endoproteolytic processing at the N-terminus of the amyloid
precursor protein (APP) [3]. A significant genetic link has
been found between overproduction of the AB peptide and
early-onset forms of familial AD [5]. Mutations in the genes
for APP, presenilin 1 (PSI), and presenilin 2 (PS2) all in-
crease production of AB42 presymptomatically and cause fa-
milial AD in a highly penetrant fashion [5]. Overproduction
of AP occurs years before symptoms arise, suggesting that it
plays a role in the early etiology of the disease [3,5].

Recent research has focused on how AB and/or its fragments
exert neurotoxic effects on cells at the plasma membrane
level [6]. This assumption of membrane-based neurotox-
icity stems from the observation that amyloid deposits are
mostly extracellular. There are two deficiencies in assuming
membrane-level neurotoxicity to be the primary reason for
neuronal loss in AD. Firstly, intracellular A accumulation
has been observed in neurons and endothelial cells [7,8];
intraneuronal AP appears to precede NFT and A plaque
formation, representing an earlier event in AD progression
and demonstrating the possibility of effects unrelated to
membrane interaction. Secondly, AD has a significant vas-
cular component which has been verified by epidemiolog-
ic, neuroimaging, pathological, pharmacotherapeutic, and
clinical studies [6,9]. Changes in cerebral circulation have
been linked to AD [10], and a number of factors that com-
promise blood circulation are associated with prevalence to
AD: non-insulin-dependent diabetes mellitus [11], athero-
sclerosis [12], smoking [13], and atrial fibrillation [14].
Chronic brain hypoperfusion may well be the reason for
AD-related neuronal degradation and apoptosis [10].

AD’s vascular component may involve nitric oxide (NO)
[15]. Nitric oxide is a compound with important physiologi-
cal functions, such as neurotransmission required for mem-
ory ability, and notably the relaxation of smooth muscles
in arterial walls; consequently it is important in controlling
blood flow and pressure [16]. While a relationship between
AP and NO has been investigated, most reports deal with the
neurotoxic effects of NO derived from inducible nitric oxide
synthase (INOS, NOS-2) as enhanced by AB [15]. Although
this process might be involved in some neurodegeneration,
more important is the NO released by constitutive NO syn-
thase (cNOS, NOS-1/NOS-3), which demonstrates neuropro-

tective abilities and regulates critical neuronal/endothelial
functions and vasorelaxation [15].

An alternate hypothesis, coupling the amyloid hypothesis to
NO, is that an underlying AB-driven process may promote AD
through a lack of basal NO from c¢NOS, which would result
in loss of neurotransmittive function, brain hypoperfusion
and decreased neuroprotectivity [2]. In this regard, NO’s
effects on AP production has not been investigated.

Morphine can have a neuroprotective effect in the pres-
ence of neurotoxic agents, and is associated with anti-in-
flammatory agents and the down regulation of physiologi-
cal responses, especially those of the immune system [17].
Morphine has endogenous signaling functions and releas-
es NO after binding to the mu-3 opiate receptor [17]. We
now show that NO regulates AP production by altering the
expression of BACE-1 (B-secretase) and BACE-2, which are
degradative enzymes of APP, with the latter having a protec-
tive role. Simultaneously, AR down regulates cNOS derived
NO production, again limiting its normal protective func-
tion. We surmise this proposed downward cycle ultimately
results in the over production of AP, and a significant loss
of NO required for normal neuronal function and vasoreg-
ulation within the brain.

MATERIAL AND METHODS

Cell culturing and treatment

SH-SY5Y human neuroblastoma cells (ATCC, USA) were cul-
tured in Dulbecco’s modified Eagle’s medium/Ham’s nutri-
ent mixture (DMEM-F12) (Invitrogen, USA) and HTB-11
human neuroblastoma cells (ATCC, USA) were cultured
in Minimum Essential Medium Alpha Medium (MEM-o:)
(Invitrogen, USA). Cells were kept in a 37°C incubator
(Napco) gassed with 5% CO,/95% air. All treatments were
performed under a sterile hood.

mRNA expression analysis

Reverse transcription-polymerase chain reaction (RT-PCR)
was performed to analyze the effects of AP25-35, morphine,
and SNAP treatments upon BACE-1 and BACE-2 mRNA ex-
pression in SH-SY5Y and HTB-11 cells. After the treatment
time-period cells were harvested and total RNA was extracted
using RNeasy RNA Isolation kit (Qiagen) following the man-
ufacturer’s procedures. Total RNA yield was determined us-
ing a RNA/DNA calculator (Pharmacia Biotech). Total RNA
concentration was then standardized for semi-quantitative
RT-PCR, which was carried out in a Geneamp Thermocycler
PCR System 9700 (P.E. Applied Biosystems). Primers used
for PCR were F: 5" TGACTGGGAACACCCCATAACT-
3" R: 5’-CGAGCGCCTC AGTGTTACTCT-3’ for BACE-
1 and F: 5-AGCCATCCTCCTTGTCTTAATCG-3" R:
5 TCTGGCGGAAAATAACCTCAA-3’ for BACE-2, expect-
ed product length 556 bp for both primer sets. PCR prod-
ucts and a 100 BP DNA marker were then loaded in a 2%
agarose gel stained with ethidium bromide. Gel electro-
phoresis was performed using a power-supply (E-C Apparatus
Corp.) set at 110V with constant amperage for 1.5 hours.
Gels were then photographed using a Gel Documentation
System (UVP) and bands analyzed using Gel-Pro Analyzer
(MediaCybernetics) on a P4 Windows machine.
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Figure 1. RT-PCR analysis of BACE-1 gene expression in HTB-11
neuroblastoma cells. Lane 1: untreated cells, lane 2: 24-h
treatment with 1 pM morphine, lane 3: 24-h treatment with
5 uM morphine.

Nitric oxide detection apparatus

The production of NO in SH-SY5Y cells was detected using
the Apollo 4000 Free Radical Analyzer (World Precision
Instruments). SH-SY5Y cells were trypsinized and cultured
in a 6-well plate for 48 hours. An I-shaped amperometric
NO-specific probe was connected to the Apollo and cali-
brated using a SNAP + CuCl, solution, which releases cal-
culable amounts of NO. Cells were pretreated with 10 and
25 pM AP for 30 m and 24 h. At the end of the treatment
time-point the media was removed and replaced with PBS
warmed in a 37°C bath, which is non-reactive with the probe;
the probe was inserted ~1.5mm above the cells and allowed
to equilibrate for 5 min, and then morphine-6-gluconuride
(M6G) was added to each plate at a concentration of 1 pM.
M6G attaches to G-protein-coupled Mu-3 receptors on SH-
SY5Y cells, stimulating release of Ca™ ions which activate
cNOS [18], normally releasing constitutive NO from neu-
roblastoma cells within minutes. The probe was monitored
in real-time for the production of NO “spikes”; NO data
was recorded using Free Radical Analyzer (World Precision
Instruments). Cells were then discarded.

Reagents

AP25-35, nitro-L-arginine methyl ester (L-NAME), ethid-
ium bromide, and Trypsin-EDTA were purchased from
Sigma-Aldrich, USA. 0.1M dithiothreitol (DTT), 10X
Polymerase Chain Reaction (PCR) buffer, Superscript re-
verse-transcription enzyme, TAQ polymerase, 50 pM MgCl,,
5x First Strand Buffer, custom PCR primers and Random
Primers were purchased from Invitrogen, USA, and stored
at —20°C. Phosphate-buffered saline was also purchased

Figure 2. RT-PCR analysis of BACE-2 gene expression in HTB-11
neuroblastoma cells, 24-h treatments. Lane 1: untreated,
lane 2: 1 uM Mo, lanes 3 and 4: 10 uM and 25 pM A, lanes
5and 6: 1 uM Mo with 10 M and 25 pM AB.

from Invitrogen, USA, and stored at room temperature.
Nucleotides (dNTPs) were purchased from Amershar
Pharmacia Biotech, USA, and stored at 25 pM concentra-
tion at —20°C. RNeasy RNA Isolation reagents and columns
were purchased from Qiagen, USA. Stock solution of the
AP25-35 peptide was prepared at ImM concentration and
kept frozen at —20°C. Electrophoresis-grade agarose was pur-
chased from Fisher Biotech, USA and stored at room tem-
perature. S-Nitroso-N-acetyl-D, L-penicillamine (SNAP) used
for both cell treatment and NO detector calibration was pur-
chased from World Precision Instruments, USA.

RESULTS

Modulation of BACE-1 and BACE-2 mRNA expression by
morphine

Untreated HTB-11 cells constitutively express BACE-1 and
BACE-2 mRNA. Morphine exposure to these cells down
regulates the expression of BACE-1 after 24 hours in a
concentration dependent manner (1 pM dosage having a
greater effect than 5, 44% as compared to 18%; Figure 1).
Simultaneously, morphine up regulates the expression of
HTB-11 BACE-2 expression, an effect enhanced in the pres-
ence of AB (Figure 2). Since BACE-1 promotes production
of AR and BACE-2 inhibits it, we surmise morphine is neu-
roprotective because such modulation of the BACE en-
zymes would decrease AP production [19]. Morphine’s ef-
fects on both BACE-1 and BACE-2 expression were shown
to be naloxone antagonizable (Figure 3), verifying that the
neuroprotective action of morphine is directly related to its
binding to the mu-3 opioid receptor since opioid peptides
do alter the expression levels of these enzymes [18].
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Figure 3. RT-PCR analysis of BACE-1 and BACE-2 gene expression in HTB-11 neuroblastoma cells, 24-h treatments. Lanes 1 and 4: untreated, lane
2and 5: 1M Morphine, lane 3 and 6: 1 uM Morphine pretreated with 10 uM Naloxone for twenty minutes. Lanes 1-3 were analyzed for
BACE-1, lanes 4—6 for BACE-2. At bottom left: cyclophilin reference gene expression, and the modulation of BACE standardized against the

reference gene.

Similar modulation of BACE-1 and BACE-2 mRNA
expression by NO

One of endogenous morphine’s primary physiological ef-
fects is cNOS derived NO release via mu-3 opiate receptor
subtype coupling [20]. To determine whether morphine’s
neuroprotective effects on the Af pathway were NO depend-
ent, HTB-11 cells were treated with L-NAME, a ¢cNOS inhib-
itor; L-NAME significantly antagonized the effects of mor-
phine (Figure 4), indicating that NO release is critical to
morphine’s neuroprotective moderation of BACE-1 and -2.
SNAP (a NO donor) exposure to HTB-11 for mRNA analysis
was then performed. After 4 and 24 hour exposure, SNAP
down regulated BACE-1 expression in a concentration de-
pendent manner similar to morphine, which also was en-
hanced in the presence of AB (Figures 5,6). SNAP also up
regulated in a concentration dependent manner BACE-2
at both the four 4 and 24 hour timepoints (Figures 7,8) as
did morphine. In the presence of AR, SNAP dose-depend-
ently increased BACE-2 expression (Figures 7,8).

To verify the semi-quantitative accuracy of the RT-PCR pro-
cedures and to explore whether the effects of SNAP on
BACE expression occur earlier than four hours, BACE-1
and BACE-2 mRNA expression were analyzed in an addi-
tional experiment for two hours (Figure 9). BACE-1 and
BACE-2 expression was altered by SNAP after two hours,
with BACE-1 down regulated and BACE-2 up regulated.

The expression of the reference genes B-actin, and cyclo-
philin were not affected.

B-amyloid inhibits NO release in SH-SY5Y cells

SH-SY5Y neuroblastoma cells normally release NO via cNOS
in response to application of either morphine or its metab-
olite, morphine-6-glucuronide (M6G) [18,20]. Morphine/
M6G binds to the G-protein coupled mu-3 receptor, stim-
ulating intracellular Ca* transients which activate cNOS,
liberating NO [18]. To determine whether AB disrupts this
process, SH-SY5Y cells were pretreated with varying concen-
trations of AP for 1 hour. Following the addition of M6G,
the AP treated cells show a dose-dependent decrease in NO
release, demonstrating that AP is dose-dependently inhibit-
ing the release of constitutive NO (Figure 10). Pretreatment
with L-NAME (10~ M), a ¢cNOS inhibitor, for 4 minutes also
prevented M6G-induced release of NO, verifying that M6G
was indeed inducing release of NO through ¢cNOS given the
rapid time course of the coupling (Figure 10). The reduc-
tion of M6G-induced NO release after AP treatment sug-
gests that AB is either a) directly inhibiting the activation of
cNOS, b) interfering with the binding of M6G to the mu-3
receptor, both of which would potentially impact the level
of basal NO in the AD-afflicted human brain. Furthermore,
SH-SY5Y cells release NO at a low level compared to human
immune and vascular tissues (3—4 nM compared to 26-29
nM morphine at 10° M).
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Figure 4. RT-PCR analysis of BACE-1 and BACE-2 gene expression in HTB-11 neuroblastoma cells, 24-h treatments. Lanes 1 and 4: untreated, lane
2and 5: 1M Morphine, lane 3 and 6: 1 uM Morphine pretreated with 10 uM L-NAME for twenty minutes. Lanes 1—3 were analyzed for
BACE-1, lanes 4—6 for BACE-2. At bottom left: cyclophilin reference gene expression, and the modulation of BACE standardized against the

reference gene.

DiscussION

The results of the present study demonstrate that mor-
phine, in a concentration and time dependent manner,
up regulates BACE-2 expression while simultaneously down
regulating BACE-1 expression. This phenomenon can be
blocked by treating the cells with the opiate receptor antag-
onist naloxone. This morphine mediated process is coupled
cNOS derived NO release, which was ascertained by treat-
ing the tissue with the NOS inhibitor L-NAME. NO alone
can mediate this effect, further substantiating this observa-
tion. Additionally, in the presence of Ap both the morphine
and NO effects are enhanced. AP alone appears to have the
ability to inhibit cNOS derived NO release at higher con-
centrations. We surmise a two-way relationship between A
and morphine/NO. Morphine/NO modifies the expression
of two proteins critical to the production of AB, down regu-
lating BACE-1 and up regulating the expression of BACE-
2. In addition, after long term incubation AP seems to en-
hance the ability of NO to modify BACE expression. Taken

together morphine, via its coupling to NO, appears to be
neuroprotective since it promotes BACE-2 up regulation,
which enhances AP catabolism, avoiding the effect of Ap
inhibiting NO production.

The production pathway of AR has been extensively stud-
ied. APP, a large type-I membrane-bound protein [21], is
expressed ubiquitously throughout human cells, and AR is
anormal product of APP metabolism in most cells. APP can
be cleaved by Bsecretase (BACE-1) to produce a secreted ec-
todomain of APP (sAPPB) and C99, the membrane-bound
C-terminal 99 amino acid chain of APP. ysecretase, a protein
that appears to require the presenilin proteins PS1 and PS2
to function proteolytically, then cleaves C99 to release AB,
some of which is secreted from the cell. A third secretase,
o-secretase, also has the ability to cleave APP but cuts the
protein in the middle of the AP domain, precluding forma-
tion of AP. a-secretase cleavage produces the secreted sAP-
Po ectodomain, and the membrane-bound fragment C83,
which is cleaved by ysecretase to form a non-toxic 3-kDa
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Figure 5. RT-PCR analysis of BACE-1 gene expression in HTB-11
neuroblastoma cells, 4-h treatments. Lane 1: untreated,
lane 2,3 and 4: 1M, 5 uM and 10uM SNAP, lane 5: 25 uM
AB with 1 uM SNAP, lane 6: 25 uM A with 10 uM SNAP.

Figure 7. RT-PCR analysis of BACE-2 gene expression in HTB-11
neuroblastoma cells, 4-h treatments. Lane 1: untreated,
lane 2,3 and 4: 1 uM, 5 uM and 10 uM SNAP, lane 5: 25 uM
AB with 1 uM SNAP, lane 6: 25 uM A with 10 uM SNAP.
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Figure 6. RT-PCR analysis of BACE-1 gene expression in HTB-11
neuroblastoma cells, 24-h treatments. Lane 1: untreated,
lane 2,3 and 4: 1 uM, 5 uM and 10 uM SNAP, lane 5: 25 uM
AB with 1 uM SNAP, lane 6: 25 uM A with 10 M SNAP.

fragment (p3) whose function is unclear [19]. The BACE-
1 homologue, and BACE-2, exhibits ~64% amino acid se-
quence identity [22]; while this homologue can cleave APP
at the B-site, it cleaves with higher efficiency at two other
positions within the A domain near the o-secretase cleav-
age site, making it function as an alternative O-secretase.
Thus, while BACE-1 promotes production of A, BACE-
2 helps to inhibit it, thereby exerting a protective role. We
now demonstrate this protective role is extended to endog-
enous morphine and NO signaling.

Figure 8. RT-PCR analysis of BACE-2 gene expression in HTB-11
neuroblastoma cells, 24-h treatments. Lane 1: untreated,
lane 2,3 and 4: 1M, 5 pM and 10 uM SNAP, lane 5: 25 pM
AB with 1 uM SNAP, lane 6: 25 uM A with 10 uM SNAP.

Morphine’s/NO’s BACE 2’s stimulatory activity, as dem-
onstrated in this report, may be explained in several ways.
Morphine via NO and AP could be interacting with tran-
scriptional regulators for BACE-1 and BACE-2 and thus,
the normal self-regulation of the AP production requires
NO. On the other hand, it may be NO’s antioxidant abil-
ities that are at work, eliminating free radicals and super-
oxide anions that maintain or encourage the production
of AB as an inflammatory signal [23]. Other studies have
found a significant connection between AD and oxidative
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Figure 9. RT-PCR analysis of BACE-1 and BACE-2 gene expression in HTB-11 neuroblastoma cells, 2-h treatments. Lanes 1and 4: untreated, lane 2
and 5: 1 M SNAP, lane 3 and 6: 5 uM SNAP. Lanes 1-3 were analyzed for BACE-1, lanes 4—6 for BACE-2. At left: -actin reference gene
expression, and the moderation of BACE standardized against the reference gene.

stress [24]; the antioxidant properties of basal NO may be
vital to combating the progression of AD [2].

The possibility that morphine may moderate key enzymes
in the AP pathway alongside NO exists. Here, NO is not
the primary regulator, and morphine is since it stimulates
NO release. This relationship has been demonstrated in
rat hippocampus [25]. This hypothesis is also based on the
findings that morphine is found and can be made in ver-
tebrate and invertebrate organisms [20,26] and functions
as a neurotransmitter/neurohormone. Morphine also has
been shown to modulate immune activities, including tu-
mor growth [18]. Endogenous morphine appears also to

be involved with memory retention [27], and nociceptive
transmission [28]. A deficiency of endogenous morphine
would likely correspond to a lowering of basal NO, which
as shown above appears to have a role in moderating A
production.

Of equal importance is the observation that AP inhibits
NO release in these neuronal cell lines, allowing a proin-
flammatory response to develop [29]. Indeed, in the past
we speculated that various diseases may have a proinflam-
matory core, including AD [30]. Previous studies have at-
tempted to implicate A in neurotoxic mechanisms via
the cell membrane, sometimes in connection with cell
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Figure 10. Representative real-time amperometric analysis of NO release from SH-SY5Y neuroblastoma cells pretreated with -Amyloid, stimulated
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Figure 11. Diagram of theorized role of NO in Alzheimer’s disease.
Deficiency of endogenous morphine or other cNOS
activator triggers a vicious cycle of reduced NO release
and increased A production. This causes a severe lack
of basal NO, resulting in loss of neuronal function and
symptoms of AD.

death genes or oxidative damage [6]. However, the most
convincing and concrete explanation for AD based on
the amyloid hypothesis would be one finding support in
existing epidemiological/clinical data that AD and vascu-
lar diseases have significant coincidence [6,9-14], rath-
er than rely solely on pharmacological experimentation.
A vascular component to AD could be explained by AB’s
inhibition of NO, a chemical that controls vasodilation
[16]. Inhibition of NO would require internalization of
AB, which is a process that occurs well before the onset
of AD [15]. Lack of adequate basal NO over an extended
period of time, in addition to the presence of constrictive
amyloid plaques throughout the brain, would produce or
result from chronic hypoperfusion; the vascular endothe-
lium in brain microvessels is under constant “shear stress”
and any condition altering this state is likely to create he-
modynamic abnormalities and reduce blood flow [31].
Hypoperfusion would impair neuronal function through
the hindrance of neurono-glial energy metabolism, a re-
sult of decreased glucose and oxygen delivery from the cir-
culatory system [31]. As well, chronic hypoperfusion has
been linked to increases in oxidative stress and hypoper-
fusive brain lesions [32].

Assuming a deficiency of endogenous morphine or other
cNOS activators/scavengers, a decrease in levels of basal NO
will occur over time, allowing for a novel theory about the or-
igin of AD. This scenario may work because NO is scavenged
by excessive free radical generation. Moreover, since estrogen
also stimulates cNOS derived NO production from neural and
vascular tissues, a protective role for it too exists [33-37]. Thus,
morphine metabolism alterations may also lead to a dynamic
loss of control of blood vessel contractility, resulting in hypop-
erfusion. During this period NO’s moderation of BACE-1 and
BACE-2 gene expression decreases; BACE-1 expression rises
and BACE-2 expression falls since this would be the proper
signaling for proinflammatory signaling, i.e., AR is proinflam-
matory [2]. More BACE-1 then becomes available to cleave
APP into AR, and AR levels increase; A is secreted out of the
cell to aggregate into amyloid plaques and soluble A levels
increase within the cell. Internalized A inhibits NO release
by the cell, which then creates a vicious cycle: NO levels are
further decreased, lessening regulation of the BACE genes,
which again increases the production of AB and the process
repeats. Simultaneously, AB, would promote a chronic and
progressively increasing inflammatory reaction, initiating both
vascular and neural damage. As the pathology of AD contin-
ues, NO levels decrease to a point where hypoperfusion of
the brain becomes chronically destructive. In brain cells oxi-
dative stress rises; neurons undergo apoptosis and overall neu-
ronal function decreases, producing memory loss, cognitive
disorder, and other typical symptoms of AD.

Further evidence for the likelihood of the above scenario
in a case of AD is seen in the potential of not only neurons
but also glia and endothelia [15] to proteolitically process
APP and create AP. Further examination of the existence
of a two-way relationship of A and NO in such cells is war-
ranted: if such cells became involved in a process, the abil-
ity for NO deficiency to initiate AD pathology is greatly in-
creased, with an exceedingly larger number of brain cells
able to contribute to the disease’s progression.

CONCLUSIONS

A novel bidirectional relationship between AB and endog-
enous morphine/NO has been surmised, with NO regulat-
ing the expression of proteolytic enzymes involved in the
synthesis and catabolism of A and inhibiting the release
of NO via cNOS activation. This relationship may help ex-
plain the pathological mechanism and progression of AD
in accordance with the amyloid hypothesis; in addition, it
offers support to the hypothesis of AD being a primarily
vascular disease. Moreover, endogenous morphine via its
down regulating abilities appears to have a protective role.
Morphine’s combined effect on BACE-1 and BACE-2 ex-
pression are neuroprotective; morphine is down regulat-
ing expression of BACE-1, the initial proteolytic enzyme
for AP synthesis, and in the presence of AP, is up regulat-
ing BACE-2, which inhibits AB synthesis by cleaving APP in
such a way that Ap cannot be formed. Morphine’s surmised
role in this process also enhances its identity as an endog-
enous chemical messenger.
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