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Recent reviews have examined the extent to which routine next-generation sequencing (NGS) on clinical spec-
imens will improve the capabilities of clinical microbiology laboratories in the short term, but do not explore
integrating NGS with clinical data from electronic medical records (EMRs), immune profiling data, and other
rich datasets to create multiscale predictive models. This review introduces a range of “omics” and patient data
sources relevant to managing infections and proposes 3 potentially disruptive applications for these data in the
clinical workflow. The combined threats of healthcare-associated infections and multidrug-resistant organisms
may be addressed by multiscale analysis of NGS and EMR data that is ideally updated and refined over time
within each healthcare organization. Such data and analysis should form the cornerstone of future learning
health systems for infectious disease.
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Next-generation sequencing (NGS) and “big data” anal-
ysis techniques may transform our understanding of
diseases that have a complex inherited component,
such as cancer, diabetes, and heart failure. Perhaps
even more significant is the impact these technologies
will have on the management of infectious diseases,
which have discrete, identifiable causes that can be iso-
lated, cultured, and tested against drugs in vitro as part
of a standard clinical workflow. Despite steady techno-
logical improvements in each step, this workflow’s prin-
ciples have not changed for a century [1, 2].

Our capacity to acquire “omics” data about infections
is increasing exponentially. Nanoscale parallelization of

DNA sequencing has precipitously dropped the cost
per base pair of finished genomes while increasing
throughput, and the cost of sequencing and assembling
a bacterial genome trends below $100 [2]. PacBio RS se-
quencing has increased median read lengths to over 10
kbp, facilitating rapid, automated finishing of genomes
for outbreak pathogens [3, 4]. Recent studies have used
“omics” experimental techniques such as Luminex cy-
tokine assays, RNA sequencing, and mass cytometry
to characterize immune responses to infection or vacci-
nation with remarkable precision. Potential applica-
tions of this range from classifying acute respiratory
infections in children [5] to predicting immunogenicity
of a vaccine [6].

Many public databases curate and disseminate “omics”
data relevant to infectious disease (Table 1), but most
lack significant clinical metadata. Increasing adoption
of electronic medical records (EMRs) can potentially
mitigate this problem because they typically include
data on demographics, medications, laboratory results,
and more. However, with many different stakeholders
entering EMR data, automatically extracting certain
facts (eg, “this patient had the flu last Tuesday”) is
often difficult. Nevertheless, high-accuracy methods
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for extracting infectious phenotypes such as influenza-like
illness [7], unclear human immunodeficiency virus (HIV) status
[8], and community-acquired pneumonia [9] have been de-
monstrated, and consortia such as eMERGE (Electronic Medi-
cal Records and Genomics) are standardizing comparison,
validation, and deposition of these algorithms into a central
repository [10].

The marriage of real-time digital clinical information with
“omics” technology creates the opportunity to increase the pre-
cision of clinical decision making and challenges us to quickly
design and execute bioinformatics analyses. Predictive model-
ing of infectious disease that incorporates EMR data is still
rare, although one recent study generated a social network for
hospital-acquired infection from EMR data using recorded
contacts between patients and caretakers [11]. Another found
that statistical analysis of EMR data produces risk factors for
Clostridium difficile infection (CDI) that outperform models
based only on medically recognized risks [12]. Likely because
of the difficulty of integrating data across so many levels, no
published studies have yet bridged predictive modeling on
EMR data with pathogen genome sequences or other “omics”
data from individual patients. Yet, for infectious disease, this
is exactly what will fulfill the vision of a rapid-learning health
system [13, 14] that converts the informational byproducts of
healthcare recorded by practitioners into evidence for future de-
cision making. Whereas EMR data holds details of the clinical
process and outcomes, “omics” data tie it back to pathophysiol-
ogy and the precise strain and host–pathogen interactions pre-
sent in each patient. Together, they can fuel a “learning engine”
that integrates heterogeneous data into new clinical insights, in-
terventions, and therapies. We will discuss how to leverage

current bioinformatics software to build such an engine, and
how this engine will be able to attack currently insurmountable
problems in the field.

THE GENOMIC CLINICAL MICROBIOLOGY
LABORATORY

Previous reviews [1, 2] have proposed that cheap sequencing
technology will transform clinical microbiology, while acknowl-
edging technical and informational barriers to adoption.
Whole-genome sequencing via NGS provides ultimate resolu-
tion for epidemiological studies of transmission and relatedness,
and may soon be cost-effective for routine use [1, 2]. For path-
ogen identification, however, NGS is unlikely to usurp robotic
culturing systems (eg, Vitek and BD Phoenix) or newer mass
spectrometry systems by cost and sensitivity comparisons
alone, although it can lower turnaround time for difficult-to-
culture organisms and identify novel or rarely seen pathogens
[1, 15]. Because susceptibility or resistance of an organism
to drugs is in principle fully encoded in its genetic material
[2, 16], NGS can also lower turnaround times for drug suscept-
ibility testing of slow-growing organisms, such as Mycobacteri-
um tuberculosis [17] and HIV type 1 [18]. This strategy
should only expand as fuller catalogs of genomic variants that
cause drug resistance are compiled for other pathogenic
organisms.

Leveraging Existing Bioinformatics Tools
An oft-mentioned hurdle [1, 2] for widespread use of NGS in
clinical microbiology is the lack of readily accessible software
for converting these data into species identifications, phylogenies,

Table 1. Examples of Public Bioinformatics Databases That May Be Leveraged for Multiscale Analysis of Infectious Diseasea

Database Focus For General Research

For Infectious Disease

Multipathogen Pathogen-Specific

Genomes • NCBI Nucleotide (GenBank/
RefSeq)

• ENA/EMBL
• DDBJ

• ViPR
• NMPDR
• PATRIC
• EuPathDB

• Influenza Research Database
• Tuberculosis Database
• LANL: Databases for HIV, HCV,

and HFV

Gene products and
functionality

• UniProt
• KEGG

• Pathogen-Host Interaction Database
• Antibiotic Resistance Genes Database
• Comprehensive Antibiotic Resistance

Database
Expression and immune
profiles

• GEO
• ArrayExpress

• ImmPort

Citations for individual databases can be found in the Supplementary Data.

Abbreviations: DDBJ, DNA Data Bank of Japan; ENA/EMBL, European Nucleotide Archive/EuropeanMolecular Biology Laboratory; EuPathDB, Eukaryotic Pathogen
Database; GEO, Gene Expression Omnibus; HCV, hepatitis C virus; HFV, hemorrhagic fever viruses; HIV, human immunodeficiency virus; ImmPort, Immunology
Database and Analysis Portal; KEGG, Kyoto Encyclopedia of Genes and Genomes; LANL, Los Alamos National Laboratory; NCBI, National Center for Biotechnology
Information; NMPDR, National Microbial Pathogen Data Resource; PATRIC, Pathosystems Resource Integration Center; ViPR, Virus Pathogen Database and Analysis
Resource.
a Not an exhaustive list.
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and drug susceptibilities. However, many mature open-source
bioinformatics solutions for individual components of these
problems exist, and connecting these components into a pipe-
line is therefore a tractable software engineering exercise. Exam-
ples for most subtasks are listed in Table 2. As NGS use by
clinical microbiology laboratories becomes more commonplace,
we might anticipate full-fledged genomic clinical microbiology
software packages to become widely available.

This expectation has 3 foreseeable shortcomings. The first is
that current tools are tied to centrally curated repositories of

evidence. Although proponents of genomic clinical microbiolo-
gy often envision encyclopedic databases hosted by internation-
al consortia [1, 2], human curation is expensive and inefficient
at scale, and many infectious diseases are locale-specific
phenomena. Models based on pooled data may fail to reflect
variation between healthcare delivery regions [19, 20]; for in-
stance, a recent fitness model of H3N2 influenza based on inter-
national genomic surveillance data creates predictions only at
the resolution of clades spanning multiple continents [21]. Be-
cause implementation of NGS in a healthcare institution’s mi-
crobiology laboratory produces copious sequencing data not
easily shared through public databases, institutions should pre-
pare to manage repositories of local evidence and predictive
models that work specifically for them. Over time, as data
exchange interfaces are developed, institutions could form con-
sortia to generalize analyses, which is a strategy that has success-
fully increased the power of human genome-wide association
studies [22, 23].

A second shortcoming is that current pathogen annotation
tools primarily make predictions using the simplistic criterion
of sequence similarity. Machine learning (ML) algorithms
could eventually integrate a wider array of genotypic features ex-
tractable from pathogen genomes—variant calls, putative gene
and motif annotations, and more—and train holistic models
that predict phenotypes. A “top-down,” integrative model pre-
dicting limited phenotypes from genotyping for Mycoplasma
genitalium is available [24]; top-down predictions of virulence,
however, add the substantial complexity of host interactions.
Therefore, genome-wide ML models of virulence have mostly
been “bottom-up,” blind to mechanistic knowledge, and orient-
ed toward even smaller-genome pathogens with considerable
genomic surveillance data. ML on viral sequence features has
predicted more effective antiretroviral combinations for HIV
[25–27], genetic markers for host selectivity within families of
viruses [28], and optimal strain selection for H3N2 influenza
vaccines [21]. In general, given the explosion in available data,
significant untapped potential remains for ML-based models
that predict virulence, transmissibility, and drug resistance
from pathogen genotypes.

The third shortcoming is that for many common pathogens,
these models are still limited by the paucity of clinical metadata
linked to sequenced pathogens. Pathogen phenotypes accessible
directly from EMRs include prognostic variables, such as length
of stay and disposition, and laboratory results, such as drug sus-
ceptibilities. Although laboratory information systems typically
do not forward nonclinical results (eg, growth curves) to EMRs,
data exported from the laboratory information systems can help
define richer phenotypes. For some diseases, EMRs will contain
laboratory results that directly reflect infection severity (eg, viral
load for hepatitis C virus and HIV) [29], whereas other diseases
will require more complex criteria [7, 9, 30]. Natural language

Table 2. Selected Published Bioinformatics Software Packages
or Databases That Address Specific Steps of Clinical Microbiology
Tasks Using Next-Generation Sequencing Dataa

Problem Domain Software or Database

Strain typing • Multilocus sequence typing
database

De novo assembly from
long reads

• Celera
• Hierarchical Genome Assembly

Process

Species identification
From clonal sample • NCBI BLAST

• GenBank
• Other genome databases in

Table 1

From nonclonal sample

Meta-assembly • AMOS
• MIRA
• MetaVelvet

Clustering and species
annotation

• MEGAN
• MG-RAST

Maximum likelihood
phylogeny trees

• BEAST
• RAxML
• ClonalFrame
• ClonalOrigin

Whole-genome alignment

For SNP calling • Mummer
• Mugsy

For structural variant
calling

• Mauve

Gene annotation
Bacterial • GLIMMER

• RAST

Drug resistance in
bacteria

• ResFinder
• ARG-ANNOT

Other • Influenza Virus Sequence
Annotation Tool

Citations for individual databases can be found in the Supplementary Data.

Abbreviations: AMOS, A Modular, Open-Source assembler; ARG-ANNOT,
Antibiotic Resistance Gene–ANNOTation; BEAST, Bayesian Evolutionary
Analysis Sampling Trees; BLAST, Basic Local Alignment Search Tool;
GLIMMER, Gene Locator and Interpolated Markov Modeler; MEGAN,
MetaGenome Analyzer Database; MG-RAST, Metagenomics Rapid Annotation
Using Subsystem Technology; MIRA, Mimicking Intelligent Read Assembly;
NCBI, National Center for Biotechnology Information; RAxML, Randomized
Axelerated Maximum Likelihood; RAST, Rapid Annotation using Subsystem
Technology; SNP, single-nucleotide polymorphism.
a Not an exhaustive list. Well-established tools are available for many specific
subtasks.
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processing of physician notes will facilitate the extraction of
complex, high-accuracy clinical phenotypes from the EMR [7,
31]. Routine NGS of specimens and EMR data on drugs pre-
scribed and administered will enable ad hoc studies crossing
pathogen genotypes against interventions and outcomes. Richer
characterization of particular host–pathogen encounters may be
provided by immune and molecular profiling of selected pa-
tients, as well as animal experiments that establish individual
pathogen genetic associations and molecular mechanisms. Bio-
markers derived from such data [5, 6] could enhance predictive
models built on a zealous integration of NGS and EMR data.

Increasing EMR phenotype information associated with
pathogen genomes will spur a new generation of pathogenicity
and risk models based on genomic data. Ideally, these models
can drive a “learning engine” that integrates heterogeneous
input data from an encounter with an infected patient and pre-
dict outcomes for possible interventions. Predictions can be
delivered to physicians via clinical decision support systems
that complement EMR functions by suggesting relevant actions
within a patient’s electronic chart. The closing of the
EMR–NGS–EMR loop (Figure 1) should be the ultimate goal
of bioinformatics pipelines for genomic clinical microbiology,
because this would maximize the utility of data created for clin-
ical encounters, continuously turning yesterday’s observations
and outcomes into evidence for tomorrow’s predictions [13, 14].

This sounds ambitious, but we can look to analogous soft-
ware designed as subcomponents of learning healthcare systems
to anticipate likely costs and avenues for development. The i2b2
(Informatics for Integrating Biology and the Bedside) platform
[23] and its counterpart SCILHS (Scalable Collaborative Infra-
structure for a Learning Health System) [32] are vendor-agnos-
tic solutions for extracting and unifying data across EMRs for
reuse in cohort design and robust meta-analysis. The eMERGE
consortium stimulated the creation of SHARPn (Strategic
Health IT Advanced Research Projects) for normalization and
natural language processing of EMR data [33] and CLIP-
MERGE (Clinical Implementation of Personalized Medicine
Through Electronic Health Records and Genomics) for auto-
mated pharmacogenomics alerts [34]. For these examples,
working software was created after 1–5 years of development
with $100 000–$10 million of annual public grant funding
[23, 32–34]. If the aforementioned open-source software is le-
veraged, an equal scale of public funding and collaboration
among academic medical centers could make similar strides to-
ward the proposal in Figure 1. A modular framework allowed
i2b2 to expand in scope organically after initial release [23,
32], suggesting that successful strategies should first aim for
simple but clinically useful tasks such as identifying species
and transmissions while anticipating the addition of more
complex analyses via plugins and community contributions.
In short, a reasonable investment in scrupulous software

engineering could produce the seeds of a learning health system
for infectious disease within the decade.

IMPACT ON CLINICAL MANAGEMENT

Three concrete applications of this strategy address urgent glob-
al problems in infectious disease. One problem is rising antimi-
crobial resistance, which the World Health Organization names
as one of the 3 greatest threats to human health [35]. Care pro-
viders overusing antimicrobials and fomenting resistance in
subclinical carriers are partly to blame, with recent studies
estimating the fraction of misuse to be between one-quarter
and one-half of all treatments [36]. Multidrug resistance
increases the morbidity and mortality of healthcare-acquired
infections (HAIs), which have an incidence of 1.7 million cases
per year in the United States and an estimated annual cost of
more than $30 billion [37] that dwarfs the likely cost of any in-
formatics-based preventive efforts. The sobering threat of exten-
sively drug-resistant community-circulating organisms, some of
which have therapeutic failure rates of 25%–29% [38], alters the
risk analysis for hospital procedures once considered routine
and calls for comprehensive new strategies for management.

Identifying High-Risk Patients for HAI
Infection control for HAIs depends on identifying high-risk pa-
tients and applying isolation precautions or reducing known
risk factors during their hospital course. For CDI, the most fre-
quently reported nosocomial infection in the United States,
many questions about how infections are acquired and how
to manage at-risk patients remain [39]. The prevailing notion
that infections are mostly transmitted person-to-person within
hospitals [40] conflicts with recent NGS evidence that sources of
infection are more diverse [41], suggesting a greater role for
asymptomatic colonized patients and environmental sources.

Each healthcare system represents a unique milieu of person-
to-person contact networks, contaminated surfaces, micro-
biomes, and asymptomatic colonization that contributes to
the risk of CDI. Data from EMRs and NGS can prove or dis-
prove transmission between patients and unlock the secrets of
modifiable risk factors in this chaotic environment. ML algo-
rithms predicting individual risk of CDI for a large hospital per-
formed better (area under the receiver-operating characteristic
curve [AUC] = 0.81) when operating on >10 000 unconstrained
EMR variables rather than curated variables for known risk fac-
tors [12]. Similar ML models based on EMR data between 2009
and 2014 for The Mount Sinai Hospital in New York City, en-
compassing 192 000 patients and 1366 CDI diagnoses, show
equal performance (AUC = 0.80) and draw out associations not
typically published for CDI. These may be unique to Mount
Sinai’s environment and include respiratory failure (odds ratio
[OR], 8.3; 95% confidence interval [CI], 6.6–10.3), nutritional
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irregularity (OR, 6.6; 95% CI, 4.7–8.6), and pancytopenia (OR, 4.4;
95% CI, 3.1–5.5) (Timothy O’Donnell, personal communication).

A model-based decision support system would screen pa-
tients with higher CDI or asymptomatic colonization likelihood
and allow earlier diagnosis and intervention. NGS-confirmed
transmission events and interactions between people and equip-
ment seen in the EMR and other data could extend this basic
model to highlight common factors behind verified transmis-
sion and inform empiric, real-time modifications of infection

control policy. Cross-sectional analysis by NGS-derived pheno-
types and risk factors in the EMR would facilitate more precise
clinical decision making, for instance, whether shortening
patient time in intensive care units or decreasing use of provoc-
ative antibiotics would be more preventive within the local
milieu. Short of a clinical trial that is probably infeasible to
conduct, much less replicate across institutions, there is scant
evidence for making these decisions at present, so a localized
quantitative model can only help.

Figure 1. A learning health system for infectious diseases. Next-generation sequencing (NGS) technologies now permit routine genomic analysis of
clinical microbiology specimens. When integrated with pathogen phenotypes derived from clinical metadata in electronic medical records (EMRs) and
laboratory metadata, we can generate predictive models for pathogen transmission, outbreaks, drug resistance, virulence, and risk factors for infection
or critical outcomes that are specific to the health system and its patient population. If management strategies are formulated from these predictions
and sent to infectious disease (ID) physicians and hospital infection control, a continuous loop of data analysis, application, and model refinement is
created.
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Earlier Detection of Outbreaks Inside and Outside the Hospital
Current infection control software suites such as VigiLanz Dy-
namic Monitoring Suite and TheraDoc Infection Control Assis-
tant primarily issue outbreak alerts based on infection
frequency thresholds. This could be rendered obsolete by rou-
tine NGS of clinical microbiology specimens, which determines
with great precision whether a transmission event has occurred
[1, 2]. A software system with access to EMRs and other hospital
data could automatically search elements common between ver-
ified transmission cases (caregivers, equipment, or rooms) and
alert staff to inspect these elements before they produce enough
transmissions to trigger a frequency threshold alert. Given
enough historical data, NGS could also help hospitals differen-
tiate community- from hospital-acquired infections and thereby
refine metrics used to evaluate infection control policies.

An active effort to sample the environment inside and out-
side the hospital could further extend the reach of this surveil-
lance. Within the hospital, “problem spots” identified by earlier
investigations could be resampled regularly via NGS to reeval-
uate the efficacy of infection control measures. The hospital also
samples the pathogen ecosystem of the local population. Hospi-
tals already report diagnoses of highly transmissible and dan-
gerous infections to government authorities, and sharing NGS
data for these cases would permit real-time assessment of where
pathogens are coming from, how they are evolving, and where
populations naive to a pathogen are located. Current mapping
and surveillance efforts [42] would be vastly enhanced by rich
phylogenetic information, allowing outbreaks across disparate
regions to be linked [3, 4, 43]. Fine-grained, real-time tracking
of infectious disease spread would better inform doctors diag-
nosing and treating new patients, field agents tracking cases and
contacts, and health policy makers seeking preventive popula-
tion measures.

Antimicrobial Stewardship
Decision support systems for empiric antibiotic therapy have
been investigated for decades [44], but with the prevalence of
antimicrobial resistance skyrocketing, the urgency to imple-
ment systems that specifically encourage restraint with antibiot-
ics has increased [45]. Selective reporting is a common strategy
that directs providers toward optimal therapies simply by omit-
ting names of inappropriate drugs in susceptibility reports [46].
A more aggressive strategy pushes EMR alerts whenever physi-
cians prescribe antibiotic treatment inconsistent with best prac-
tices [47].

These solutions ignore the power of the EMR to provide ev-
idence that justifies or improves the antimicrobial stewardship
interventions. For instance, although it is well accepted that an-
tibiotic overuse increases the prevalence of resistance, current
antimicrobial stewardship programs have demonstrated neither
effects on patient outcomes nor even that decreased antibiotic

treatment leads to decreased antibiotic resistance [45]. By inte-
grating NGS and EMR data, these hypotheses could be investi-
gated in minute detail within large patient cohorts. NGS can
reveal and enumerate the genetic mechanisms of resistance cir-
culating through a health system. By tracing the recurrence of
pathogens in the local community, an NGS-equipped health
system can determine whether patients receiving antibiotics
have generated and transmitted drug-resistant mutants. Specific
drug regimens can be correlated with the development of par-
ticular resistance mutations. Conversely, given enough longitu-
dinal data, the efforts of an antimicrobial stewardship program
can be validated by observing decreased emergence of resistance
mutations to drugs prescribed more conservatively.

CONCLUSIONS

Routine access to pathogen genomic data will transform our
ability to manage infections, but only if we can integrate this in-
formation with clinical and other data to power predictive mod-
els for critical outcomes. Assuming that the hurdles of cost,
accuracy, and turnaround time can be addressed, which is likely
given current trends, NGS will soon become a standard clinical
microbiology procedure. The unprecedented specificity of this
data will in the near term allow reconstruction of transmission
networks inside and outside hospitals. In the far term, having
rich clinical data linked to pathogen genotypes will permit pre-
dictions of prognosis, virulence, and drug susceptibility for ac-
tive infections once NGS data are available. Incorporating these
capabilities into a new clinical workflow that actively refines
predictive models by adjusting to new data (Figure 1) should
improve case management, risk prediction for HAIs, detection
of outbreaks, and antimicrobial stewardship. The missing link
in this transformation, and the goal for bringing it to fruition,
is software that leverages best-of-breed existing tools, incorpo-
rates all relevant heterogeneous datatypes, builds on electronic
phenotyping algorithms to scrub low-accuracy EMR data, and
validates against gold standard clinical case review.

Healthcare institutions and researchers should recognize that
a potent combination of NGS and EMR data will transform in-
fectious disease management. The threats posed by multidrug
resistance and healthcare-associated infections demand a revo-
lution in management strategy. Predictive modeling grounded
in rich, diverse molecular and clinical data will dramatically in-
crease the precision of care and help hold these threats at bay.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
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