
Vol. 29 no. 3 2013, pages 384–386
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/bts695

Genome analysis Advance Access publication December 6, 2012

ChromoZoom: a flexible, fluid, web-based genome browser
Theodore R. Pak1,2 and Frederick P. Roth1,3,4,5,*
1Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, 2Samuel Lunenfeld Research Institute, Mt. Sinai Hospital,
Toronto, ON M5G1X5, 3Department of Molecular Genetics, 4Department of Computer Science, University of Toronto,
Toronto, ON M5S3E1, Canada and 5Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston,
MA 02115, USA

Associate Editor: Alfonso Valencia

ABSTRACT

Summary: Current web-based genome browsers require repetitious

user input to scroll over long distances, alter the drawing density of

elements or zoom through multiple orders of magnitude. Generally,

either the server or the client is responsible for the majority of data

processing, resulting in either servers having to receive and handle

data relevant only to one user, or clients redundantly processing

widely viewed data. ChromoZoom pre-renders and caches

general-use tracks into tiled images on the server and serves them

in an interactive web interface with inertial scrolling and precise, fluent

zooming via the mouse wheel or trackpad. Custom tracks in several

formats can be rendered by client-side code alongside the

pre-rendered tracks, minimizing server load because of user-specific

rendering and eliminating the need to transmit private data.

ChromoZoom thereby enables rapid and simultaneous exploration of

curated, experimental and personal genomic datasets.

Availability: Human and yeast genome researchers may browse

recent assemblies within ChromoZoom at http://chromozoom.org/.

Source code is available at http://github.com/rothlab/chromozoom/.

Contact: fritz.roth@utoronto.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on May 1, 2012; revised on October 31, 2012; accepted on

November 29, 2012

1 INTRODUCTION

Genome browsers have become an essential tool for experimen-

tal and computational biologists. Among well-known web-based

browsers, the UCSC Genome Browser has gained popularity for

its ready availability, comprehensive library of genomes and

curated data and the ability to display custom data uploaded

by researchers (Dreszer et al., 2011; Nielsen et al., 2010).

Overlaying experimental data (e.g. sequence variation) onto

curated tracks (e.g. gene predictions) allows for the formulation

and verification of biological hypotheses. Researchers unfamiliar

with a newly encountered locus can inspect it within a genome

browser to determine the gene layout or potential regulatory

elements and design polymerase chain reaction or other

experiments.
Although many researchers have become familiar with the

UCSC browser and others like GBrowse (Stein et al., 2002),

Ensembl (Stalker et al., 2004) and the NCBI Map Viewer

(Wheeler et al., 2003), these tools originated before the advent

of modern web interfaces that use less page transitions and more

data dynamically loaded using Asynchronous JavaScript and ex-

tensible mark-up language (AJAX) and HTML5 techniques.

Some have attempted to incorporate aspects of the ‘rich internet

application’ experience into their interfaces—for example, each

of the aforementioned browsers now allow the user to drag the

track to move the current view—but none had a user interface

allowing smooth navigation equivalent to Google Maps, for ex-

ample, animated transitions while zooming and the absence of

loading interruptions throughout all navigational operations.
In response, ‘next-generation’ browsers like AnnoJ (http://

www.annoj.org), JBrowse (Skinner et al., 2009) and ABrowse

(Kong et al., 2012) have been built to take advantage of

modern web technologies, adding more seamless interactions

that preserve the user’s sense of location while traversing the

massive ‘landscape’ of a genome. AnnoJ and JBrowse render

most genomic data on the browser-side, the former drawing

pixels on HTML5 Canvas elements and the latter manipulating

standard HTML elements. However, both require preprocessing

of custom data by an administrator before it can be rendered

within the browser; neither accept flat files via the web interface

in the manner of the UCSC browser. ABrowse renders all data to

tiled images, but cannot zoom smoothly and requires custom

data to be fully uploaded to the server—which can be prohibitive

for large datasets. Finally, none of the browsers features inertial

scrolling, a feature popularized by iOS and Google Maps

whereby a scrollable surface can be ‘thrown’ with a finger or

the cursor to move across long distances.

2 FEATURES

ChromoZoom attempts to improve the interactivity introduced

by ‘next-generation’ genome browsers while adding custom data

capabilities and the familiar rendering styles of established brow-

sers like UCSC. The full-window interface can maximize use of

vertical display space by wrapping tracks into multiple lines,

much like paragraph text. General-use tracks can be added via

a dropdown menu (Fig. 1A); the layout updates dynamically.

The user can drag lines horizontally and vertically, and they

can also ‘throw’ the line with the mouse to scroll smoothly

through the genome. Motion of the tracks is never interrupted,

preserving the user’s sense of location throughout all navigation

operations.*To whom correspondence should be addressed.

� The Author 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 at * on February 25, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://chromozoom.org/
http://github.com/rothlab/chromozoom/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts695/-/DC1
http://www.annoj.org
http://www.annoj.org
http://bioinformatics.oxfordjournals.org/


To zoom in and out, the user can use a familiar slider and

buttons (Fig. 1B) or keyboard shortcuts to move all the way

from the genome-wide view to the base pair level, or they can

position their mouse cursor and use a scroll wheel or trackpad to

zoom continuously and precisely at any visible location (a feature

unique to ChromoZoom). To see more detail, the user can ver-

tically resize the track using its side label (Fig. 1C), which will

‘unpack’ individual elements and labels as completely as vertical

space allows. An orange warning line appears if elements are

being cropped by the edge of the track (Fig. 1D). Users can

also reorder tracks by dragging the labels in the sidebar and

remove them using the ‘show tracks. . .’ menu. A search bar

allows users to specify coordinates or coordinate ranges, for

example, ‘chr1:12340-12350’, or keywords like ‘MSH2’, which

display a dropdown of matching features (Fig. 1E). Tooltips

appear when the user hovers over track features (Fig. 1F), and

a click loads a feature description page from the UCSC Browser.

A full comparison of features with other current web-based

genome browsers is provided in Supplementary Table S1.
ChromoZoom is the first online genome browser to provide

client-side parsing and rendering of user-provided custom data,

initiated by clicking the ‘custom tracks . . . ’ button (Fig. 1G).

Browser Extensible Data (BED) tracks containing range-based

features and ‘wiggle’ (WIG) tracks of continuous quantitative

data, formatted according to UCSC’s guidelines (http://

genome.ucsc.edu/FAQ/FAQformat.html), can be read from the

client’s local disk or a public URL and are plotted adjacent to

the normal tracks. The full suite of zooming, panning, reordering

and expansion interactions applies equally to custom tracks. For

large datasets, the user can provide a track line with a

bigDataUrl pointing to a pre-indexed BED or WIG data file

in bigBed/bigWig format (Kent et al., 2010) or sequence vari-

ations in tabix-compressed Variant Call Format, VCFTabix,

(Danacek et al., 2011; Li, 2011), again formatted to UCSC’s

guidelines, and the application will seamlessly fetch data for

the current view with AJAX and render graphical data within

the browser. ChromoZoom is, therefore, ideal for exploration of

experimental data by researchers, enabling the visualization of

custom results alongside a dynamic representation of curated

genomic information.

3 IMPLEMENTATION

ChromoZoom uses a local installation of the UCSC Genome

Browser to generate and pre-cache tiled PNG images (via

Ruby scripts). Rake (‘Ruby make’) directs the creation of a con-

figuration (YAML) file for each genome, the capture of tile

images and the creation of a JSON file to initialize the web

interface. A Ruby extension written in C maximizes image-

processing performance. ImageMagick is used for many image

operations and the Nokogiri library for HTML parsing. The

eight tracks available on http://chromozoom.org/for the hg19

assembly and the 19 tracks for the sacCer3 assembly consume

64GB and 5.4GB of disk space, respectively. Tile generation

scripts are run in parallel across a computing cluster.
Because all general-use track data are converted to static tile

images, they can be served efficiently via an Apache web server, a

small amount of PHP, and appropriate use of HTTP cache dir-

ectives. Tokyo Tyrant, a fast on-disk hash table, stores the tile

images and caches search queries. The front-end is constructed

on top of jQuery and the jQuery UI widget framework. Many

HTML5 features are used, such as SVG, the Canvas and File

APIs and Web Workers. Web Workers allow computation on

custom track data to be moved to independent JavaScript

threads to avoid locking the browser UI. JavaScript for handling

custom tracks has been designed for straightforward addition of

new data formats and drawing styles.
The visual style is influenced by Edward Tufte’s principle of

maximizing the data-ink ratio (Tufte, 2001). Repetitive

high-order digits are removed from the Base Position track, the

data are placed front and centre with minimalistic borders and

labelling, and control widgets are kept in the margin and in

collapsed format until activated by the user.

ACKNOWLEDGEMENTS

The authors thank members of the Roth laboratory, in

particular Takafumi Yamaguchi and Joseph Mellor, for provid-

ing design suggestions and sample custom track data. They

thank David Haussler and W. James Kent for advice and en-

couragement and the Genome Bioinformatics Group at UC

Santa Cruz for making source code, data and documentation

for the UCSC Genome Browser (http://genome.ucsc.edu/) pub-

licly available.

Funding: National Institutes of Health (HG004233, HL107440);

Ontario Research Fund—Research Excellence Award; Canadian

Institute for Advanced Research Fellowship; Canada Excellence

Research Chair (to F.P.R.).

Conflict of Interest: none declared.

REFERENCES

Danacek,P. et al. (2011) The variant call format and VCFtools. Bioinformatics, 27,

2156–2158.

Fig. 1. The ChromoZoom web interface. (A) Select tracks to be dis-

played. (B) Zoom from genome view to individual base pairs.

(C) Resize tracks to automatically unpack features. (D) Orange line

warns of cropped data. (E) Autocomplete for keyword searching.

(F) Custom tooltips with feature details. (G) Add custom data tracks

from local files or remote URLs

385

ChromoZoom

 at * on February 25, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts695/-/DC1
http://genome.ucsc.edu/FAQ/FAQformat.html
http://genome.ucsc.edu/FAQ/FAQformat.html
http://chromozoom.org/for
http://chromozoom.org/for
http://genome.ucsc.edu/
http://bioinformatics.oxfordjournals.org/


Dreszer,T.R. et al. (2011) The UCSC Genome Browser database: extensions and

updates 2011. Nucleic Acids Res., 40, D918–D923.

Kent,W.J. et al. (2010) BigWig and BigBed: enabling browsing of large distributed

datasets. Bioinformatics, 26, 2204–2207.

Kong,L. et al. (2012) ABrowse—a customizable next-generation genome browser

framework. BMC Bioinformatics, 13, 2.

Li,H. (2011) Tabix: fast retrieval of sequence features from generic TAB-delimited

files. Bioinformatics, 27, 718–719.

Nielsen,C.B. et al. (2010) Visualizing genomes: techniques and challenges. Nat.

Methods, 7, S1–S11.

Skinner,M.E. et al. (2009) JBrowse: a next-generation genome browser. Genome

Res., 19, 1630–1638.

Stalker,J. et al. (2004) The Ensembl web site: mechanics of a genome browser.

Genome Res., 14, 951–955.

Stein,L.D. et al. (2002) The generic genome browser: a building block for a model

organism system database. Genome Res., 12, 1599–1610.

Tufte,E.R. (2001) The Visual Display of Quantitative Information. 2nd edn. Graphics

Press, Cheshire, CT.

Wheeler,D.L. et al. (2003) Database resources of the National Center for

Biotechnology. Nucleic Acids Res., 31, 28–33.

386

T.R.Pak and F.P.Roth

 at * on February 25, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

